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We prove that the passive scalar field in the Ornstein–Uhlenbeck velocity field
with wave-number dependent correlation times converges, in the white-noise
limit, to that of Kraichnan’s model with higher spatial regularity.
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1. INTRODUCTION

A passive scalar field T(t, x) in a given fluid velocity u(t, x) satisfies the
advection-diffusion equation

“T
“t

=u · NT+
o

2
DT, T(0, x)=T0(x) (1)

where o \ 0 is the molecular diffusivity. Kraichnan’s model for passive
scalar has been widely studied to understand turbulent transport in the
inertial range because of its tractability (see, e.g., refs. 18, 16, 10, and the
references therein). The model and its variants postulate a white-noise-in-
time, compressible or incompressible velocity field u which can be described
as the time derivative of a zero mean, isotropic Brownian field Bt with the
two-time structure function



E[Bt(x) − Bt(y)] é [Bs(x) − Bs(y)]

=min(t, s) F 2[1 − exp(ik · (x − y))] a−1E(g+1, k) |k|1 − d dk, a > 0
(2)

Here 2a−1E(g+1, k) is the spatial power spectrum with

E(g+1, k)=E0(k) |k|−2g − 1 for a
−1
0 ° |k| ° a

−1
1 , g ¥ (0, 1)

where E0(k) is a positive-definite matrix whose entries are homogeneous
functions of degree zero, a0 and a1 are the integral and the viscous scales
respectively and they determine the so-called inertial range. Below the
viscous scale a1 the velocity field is smooth. The spatial Hurst exponent
g characterizes the roughness of the velocity field in the inertial range
and equals 2/3 in the case of Kolmogorov’s theory of turbulence. The
tractability of this model lies in the Gaussian and white-noise nature
of the velocity field. To fix the idea, we interpret Eq. (1) in the sense of
Stratonovich’s integral

dT=NT p dBt+
o0

2
DT dt, o0 \ 0, T(0, x)=T0(x). (3)

To study the effect of a more realistic temporal structure, one
naturally considers the Ornstein–Uhlenbeck (OU) velocity field

u(t, x)=
1
e

V 1 t
e2 , x2 (4)

with a similar spatial structure but a wave-number-k dependent correlation
time a−1 |k|−2b, a > 0, b > 0, where e > 0 is the scaling parameter. The two-
time structure function has the spectral representation

E[V(t, x) − V(t, y)] é [V(s, x) − V(s, y)]

=F
R

d
[1 − exp(ik · (x − y))] exp(−a |k|2b |t − s|) E(a, k) |k|1 − d dk (5)

where E is the power spectrum given by (6) with 1 < a < 2 (see refs. 8
and 9). The spatial Hurst exponent of the velocity equals a − 1 in the iner-
tial range. The parameters a, b have the value 4/3, 1/3, respectively, in the
case of Kolmogorov’s theory of turbulence.
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In this paper we study the relation between these two model. For
simplicity of the presentation we set

E(a, k)=˛E0(k) |k|1 − 2a, for |k| ¥ (a
−1
0 , a

−1
1 )

0, for |k| ¨ (a
−1
0 , a

−1
1 ).

(6)

with a0 < ., a1 > 0. We defer the discussion of the meaning of solutions of
(1) and (3) until Section 2.

First we consider the situation of a non-vanishing ultraviolet cutoff
a1 > 0. We have the following correspondence principle.

Theorem 1. Let a0 < ., a1 > 0 be fixed. Let o=o(e) \ 0 and
lim e Q 0 o=o0 < .. Let T0 ¥ L.(Rd).

Then the solution T e
t of (1) with the drift (4) converges in distribution,

as e Q 0, in the space D([0, t0); L.

w*(Rd)), -t0 < . to the unique solution Tt

of the martingale problem (cf. (20)) corresponding to Eq. (3), where the
Brownian velocity field has the spatial covariance with the power spectrum
2a−1E(a+b, k). Here D([0, t0); L.

w*(Rd)) is the space of L.(Rd)-valued
right continuous processes with left limits endowed with the Skorohod
metric (3) and L.

w*(Rd) is the standard space L.(Rd) endowed with the
weak* topology.

This result suggests that in the limit of rapid temporal decorrelation
the OU flow resembles Kraichnan’s model with a higher spatial regularity
g=a+b − 1. In particular, the strict Kolmogorov’s theory a=4/3,
b=1/3 now corresponds to g=2/3 in Kraichnan’s model.

In the next theorem we let a1 vanish along with the scaling factor e. In
such a limit Theorem 1 is not expected to hold for compressible flows in the
entire range of a, b for the Stratonovich correction term in the limiting
Kraichnan model is well-defined only if a+b > 3/2. Moreover, for
a+b < 2 and a1=0, the Kraichnan model with compressible velocity field
may not have a unique solution for a given initial condition due to the
spatial non-Lipschitzness of the velocity field (cf. refs. 12 and 16).

Theorem 2. Suppose that the OU velocity field V is divergence-free,
N · V=0. Let a0 < . be fixed and a1=a1(e) > 0 such that lim e Q 0 a1=0. Let
o=o(e) \ 0, lim e Q 0 o=o0 < .. Let T0 ¥ L. 5 L2(Rd). If, additionally,
any one of the following conditions is satisfied:

(i) a+2b > 4;

(ii) a+2b=4, lim e Q 0 oe2
`log(1/a1)=0;

(iii) 3 < a+2b < 4, lim e Q 0 oe2
a

a+2b − 4
1 =0;
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(iv) a+2b=3, lim e Q 0 e `log(1/a1)=lim e Q 0 oe2
a

−1
1 =0;

(v) 2 < a+2b < 3, lim e Q 0 ea
a+2b − 3
1 =lim e Q 0 oe2

a
a+2b − 4
1 =0;

(vi) a+2b [ 2, lim e Q 0 ea
a+2b − 3
1 =0,

then the convergence holds as in Theorem 1 but in the space D([0, t0);
L.

w* 5 L2
w(Rd)), -t0 < . where L2

w(Rd) is the usual L2-function space
endowed with the weak topology. The Brownian flow of the limiting
Kraichnan’s model has the the spatial power spectrum 2a−1Ea(a+b, k)
where

Ea(a+b, k)= lim
a1 Q 0

E(a+b, k).

Remark 1. The assumption of L2(Rd)-initial condition in Theorem 2
is to ensure uniqueness of the limiting Kraichnan model with a1=0 (see
Section 2). The limiting velocity field is only spatially Hölder continuous
(for a+b < 2) with exponent a+b − 1.

Remark 2. For Theorem 2, when o0 > 0 and 2 < a+2b < 3,
lim e Q 0 oe2

a
a+2b − 4
1 =0 implies lim e Q 0 ea

a+2b − 3
1 =0.

Remark 3. For Theorem 2, in the special case of o0=0, the limiting
Kraichnan model preserves the L2-norm of the initial condition. On the
other hand, the energy identity for the pre-limiting model (ref. 17,
Chapt. III, Theorem 7.2)

F |T e
t (x)|2 dx+o F

t

0
F |NT e

t |
2 (x) dx ds=F |T0(x)|2 dx (7)

implies that ||T e
t ||2 < ||T0 ||2. Consequently, the convergence in the sense of

the weak-L2 topology in Theorem 2 implies that lim e Q 0 ||T e
t ||2=||Tt ||2 and

that the convergence is indeed in the strong L2 sense.

Finally we note that the Gaussianity of the velocity field is not essen-
tial to the results. It has been used in the proofs to control the first 4
moments of the velocity fields and to have a mild decay in the tail distribu-
tions of the velocity fields (cf. (36)). For non-Gaussian velocity fields the
temporal decorrelation needs to be sufficiently fast such that a certain
integral is well-defined. For instance, processes having an absolutely inte-
grable uniform-mixing coefficient would suffice (see (29) and the remark

118 Fannjiang



thereafter). The comparable result in ref. 13 requires a faster-than-Gaussian
decay in the tail distributions and does not apply here. It also requires
spatial regularity in the velocity fields (see also ref. 4).

2. FORMULATION OF SOLUTIONS

From the general theory of parabolic partial differential equations, (11)

for any fixed o > 0, e > 0, the solution T e
t (x) is a C2+g-function, with any

0 < g < a − 1. But the solutions T e
t may lose all the regularity as o Q 0,

e Q 0. So we consider the weak formulation of the equation:

OT e, hP−OT0, hP=
o

2
F

t

0
OT e

s , DhP ds −
1
e

F
t

0

7T e
s , N ·1hV 1 s

e2 , · 228 ds (8)

for any test function h ¥ C.

c (Rd), the space of smooth functions with
compact supports. We view T e

t as distribution-valued processes. The solu-
tions T e

t can be represented as

T e
t (x)=M[T0(F t, e

0 (x))] (9)

where F t, e
s is the unique stochastic flow of the SDE

dF t, e
s (x)=−

1
e

V 1F t, e
s (x),

s
e2
2 ds+o1/2 dw(t), 0 [ s [ t (10)

F t, e
t (x)=x. (11)

In view of the averaging in the representation (9) we have

Proposition 1.

||T e
t ||. [ ||T0 ||. a.s.

One also has that

E{||T e
t ||

p
p} [ ||T0 ||p

p, -p \ 1. (12)

Indeed, by the spatial homogeneity of the field V, the distribution of
F t, e

s (x) is the same as the distribution of F t, e
s (0)+x for each fixed x. Hence

we have

E[||T e
t ||

p
p] [ F ME[Tp

0 (F t, e
0 (x))] dx=ME 5F Tp

0 (F t, e
0 (0)+x) dx6=||T0 ||p

p.
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Proposition 1 (resp. (12)) says that, for T0 ¥ L.(resp. Lp), T e
t is almost

surely a L. (resp. Lp )-function for every t \ 0.
For tightness as well as identification of the limit, the following infini-

tesimal operator A e will play an important role. Let V e
t — V(t/e2, · ). Let

F e
t be the s-algebras generated by {Ve

s , s [ t} and E e
t the corresponding

conditional expectation w.r.t. F e
t . Let M e be the space of measurable

function adapted to {F e
t , -t} such that sup t < t0

E |f(t)| < .. We say
f( · ) ¥ D(Ae), the domain of A e, and A ef=g if f, g ¥ Me and for
fd(t) — d−1[E e

t f(t+d) − f(t)] we have

sup
t, d

E |fd(t)| < .

lim
d Q 0

E |fd(t) − g(t)|=0, -t.

For f(t)=f(OT e
t , hP), fŒ(t)=fŒ(OT e

t , hP), -f ¥ C3
c (R) (i.e., C3-function

with a compact support) we have the following expression from (8) and the
chain rule

A ef(t)=
o

2
fŒ(t)OT e

t , DhP−
1
e

fŒ(t)OT e
t , V

e
t (h)P (13)

where

V e
t (h) — N · [hV e

t ]. (14)

A main property of A e is that

f(t) − F
t

0
A ef(s) ds is a F e

t -martingale, f ¥ D(A e). (15)

Also,

E e
t f(s) − f(t)=F

s

t
E e

tA
ef(y) dy -s > t a.s. (16)

(see ref. 14). We can view T e
t as the distribution-valued stochastic solutions

to the martingale problem (15).
Likewise we formulate the solutions for the Kraichnan’s model (3)

as the solutions to the corresponding martingale problem. We will first
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describe the limiting martingale problem for Theorem 1 and then discuss
the changes due to a1 Q 0 in Theorem 2. We rewrite (3) as an Itô’s SDE

dTt=1o0

2
D+

1
a
B2 Tt dt+`2 a−1/2 NTt · dW(1)

t (17)

where W (1)
t (x) is the Brownian vector field with the spatial covariance

C (1)(x − y)=F exp(ik · (x − y)) E(a+b, k) |k|1 − d dk

and the operator B=B1+B2 is given by

B1f=C
i

5 “

“xi
C (1)

ij (0)6 “f

“xj
(18)

B2f=C
i, j

C (1)
ij (0)

“
2f

“xi “xj
. (19)

Equation (17) can be formulated as the martingale problem: Find a
measure P (of Tt) on the subspace of D([0, t0); L.

w*(Rd)) whose elements
have a given initial data in L.

w*(Rd) such that

f(OTt, hP) − F
t

0

3fŒ(OTt, hP) 5o0

2
OTs, DhP+

1
a
OTs, BghP6

+
1
a

fœ(OTt, hP)Oh, K (1)
Ts

hP4 ds

is a martingale w.r.t. the filtration of a cylindrical Wiener process,

for each f ¥ C3
c (R) (20)

where Bg is the adjoint of B and K (1)
Tt

is a positive-definite operator given
formally as

K (1)
Tt

h=F h(y) NTt(x) · C (1)(x − y) NTt(y) dy (21)

such that

Oh1, K (1)
f h2P=FF f(x) f(y) G (1)

h1, h2
(x, y) dx dy (22)

G (1)
h1, h2

— C
i, j

“
2

“xi “yj
[h1(x) h2(y) C (1)

ij (x − y)]. (23)
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When a1 Q 0 ( Theorem 2) C (1) in the preceding discussion should be
replaced by

Ca (1)(x − y)= lim
a1 Q 0

C (1)(x − y) (24)

and all objects (such as B, Gh1, h2
, K (1)

Tt
) related to C (1) should be replaced

accordingly (by Ba , Ḡh1, h2
, Ka (1)

Tt
). In particular, Ba1 is well-defined only for

a+b > 3/2 in general for compressible flows. Namely, the martingale
problem (20) is not well defined in the compressible case unless the limiting
Brownian velocity has a spatial Hurst exponent which is bigger than 1/2.

In the case of divergence-free vector fields, Ba1=0 and

Baf=C
i, j

Ca (1)
ij (0)

“
2f

“xi “xj
. (25)

Also,

Ḡ (1)
h1, h2

— C
i, j

Ca (1)
ij (x − y)

“h1(x)
“xi

“h2(y)
“yj

.

2.1. Uniqueness of the Limiting Kraichnan Model

When lim e Q 0 a1 > 0 the limit Brownian velocity field is spatially
smooth and generates a unique stochastic flow on Rd (refs. 1 and 2) from
which it follows the uniqueness of the martingale solution.

When lim e Q 0 a1=0 the limiting velocity field is only spatially Hölder
continuous and we establish the uniqueness of the martingale solution by
proving the uniqueness of the n-point correlation function

F t
n(x1, x2, x3,..., xn) — ET0

[Tt(x1) Tt(x2) · · · Tt(xn)].

The evolution of the n-point correlation function is given by a weakly con-
tinuous (hence strongly continuous) sub-Markovian semigroup on Lp(Rnd),
-p ¥ (1, .) whose generator Ln can be deduced by taking the test function
f(r)=rn in the martingale formulation, i.e.,

LnF(x1,..., xn)

—
o0

2
C
n

j=1
Dxj

F+
1
a

C
n

i, j=1
Ca (1)(xi − xj) : Nxi

Nxj
F, F ¥ C.

c (Rnd), o0 \ 0.
(26)
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Note that the symmetric operator Ln (26) is an essentially self-adjoint
positive operator on C.

c (Rnd), which then induces a unique symmetric
Markov semigroup of contractions on L2(Rnd). The essential self-adjoint-
ness is due to the sub-Lipschitz growth of the square-root of Ca (1)(x1 − x2)
at large |x1 |, |x2 | (hence no escape to infinity). (6)

3. PROOF OF THEOREM 1

The proofs are a refinement of that of ref. 5 to deal with the wave-
number dependence of the correlation time and the lack of spatial
regularity in the velocity fields. For the reader’s convenience, we will repeat
some of the calculations in ref. 5 and refer the reader to ref. 15 for the full
exposition of the perturbed test function method used here. The perturbed
test function method is initiated in ref. 19.

In the sequel we will adopt the following notation

f(t) — f(OT e
t , hP), fŒ(t) — fŒ(OT e

t , hP), fœ(t) — fœ(OT e
t , hP),

f'−(t) — f'−(OT e
t , hP) -f ¥ C3

c (R).

Namely, the prime stands for the differentiation w.r.t. the original argu-
ment (OT e

t , hP not t) of f, fŒ, etc.

3.1. Tightness

A family of distribution-valued right-continuous with left limits pro-
cesses {Te, 0 < e < 1} is tight if and only if the family of real-valued, right-
continuous with left limits processes {OT e, hP, 0 < e < 1} is tight for all
h ¥ C.

c (Rd). We use the tightness criterion of ref. 15 (Chap. 3, Theorem 4),
namely, we will prove: Firstly,

lim
N Q .

lim sup
e Q 0

P{sup
t < t0

|OT e, hP| \ N}=0, -t0 < .. (27)

Secondly, for each f ¥ C3
c (R) there is a sequence f e(t) ¥ D(A e) such that

for each t0 < . {A ef e(t), 0 < e < 1, 0 < t < t0} is uniformly integrable and

lim
e Q 0

P{sup
t < t0

|f e(t) − f(OT e, hP)| \ d}=0, -d > 0. (28)

Then it follows that the laws of {OT e, hP, 0 < e < 1} are tight in the space
D([0, t0); R).
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Condition (27) is satisfied as a result of Proposition 1. Let

f e
1(t) —

1
e

F
.

t
E e

t fŒ(t)OT e
t , V

e
s(h)P ds (29)

be the 1-st perturbation of f(t). Equation (29) is well-defined in view of the
spectral representation for the Gaussian process

E e
t V e

s=F e ix · ke−a |k|2b |s − t| e
− 2

V1 e
t (dk), -s \ t. (30)

For non-Gaussian processes, absolutely integrable uniform-mixing coeffi-
cients would suffice to define f e

1. (7) We then have

f e
1(t)=

e

a
fŒ(t)OT e

t , V2
e
t (h)P (31)

with

V2 e
t (h)=N · [hV2 e

t ] (32)

V2 e
t — V2 1 t

e2 , · 2 — e−2 F
.

t
E e

t V e
s ds (33)

where V2 has the power spectrum E(a+2b, k).

Proposition 2.

lim
e Q 0

sup
t < t0

E |f e
1(t)|=0, lim

e Q 0
sup
t < t0

|f e
1(t)|=0 in probability.

Proof. By Proposition 1 we have

E[|f e
1(t)|] [

e

a
||fŒ||. ||T0 ||. 5||h||. F

|x| [ M
E |V2 e

t (x)| dx+||Nh||. F
|x| [ M

E |N · V2 e
t | dx6

(34)

and

sup
t < t0

|f e
1(t)| [

e

a
||fŒ||. ||T0 ||.

×5||h||. sup
t < t0

F
|x| [ M

|V2 e
t (x)| dx+||Nh||. sup

t < t0

F
|x| [ M

|N · V2 e
t | dx6 .

(35)
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By the temporal stationarity of V2 e
t we can replace E |V2 e

t (x)|, E |N · V2 e
t (x)| in

(34) by E |V2 (0, x)|, E |N · V2 (0, x)|. By the Gaussianity, temporal stationarity
and spatial homogeneity of V2 , we can replace sup t < t0

>|x| [ M |V2 e
t (x)| dx in

(35) by

Md sup
|x| [ M
t [ t0

:V2 1 t
e
, x2: [ C log 5Mdt0

e2
6=o 11

e
2 (36)

with a random constant C possessing a distribution with a finite moment
(indeed, a Gaussian-like tail by Chernoff ’s bound). A similar inequality
holds for N · V2 . Proposition 2 now follows from (34)–(36). L

Set f e(t)=f(t) − f e
1(t). A straightforward calculation yields

A ef e
1=−

oe

2a
fœ(t)OT e

t , DhPOT e
t , V2

e
t (h)P+

oe

2a
fŒ(t)OT e

t , DV2 e
t (h)P

+
1
a

fœ(t)OT e
t , V

e
t (h)POT e

t , V2
e
t (h)P−

1
a

fŒ(t)OT e
t , V

e
t (V2

e
t (h))P

+
1
e

fŒ(t)OT e
t , V

e
t (h)P

and, hence

Aef e(t)=
o

2
fŒ(t)OT e

t , DhP−
1
a

fŒ(t)OT e
t , V

e
t (V2

e
t (h))P

−
1
a

fœ(t)OT e
t , V

e
t (h)POT e

t , V2
e
t (h)P

+
oe

2a
[fœ(t)OT e

t , DhPOT e
t , V

e
t (h)P− fŒ(t)OT e

t , DV2 e
t (h)P]

=A e
1(t)+Ae

2(t)+Ae
3(t)+Ae

4(t) (37)

where A e
2(t) and A e

3(t) are the O(1) statistical coupling terms.
For the tightness criterion stated in the beginnings of the section, it

remains to show

Proposition 3. {A ef e} are uniformly integrable and

lim
e Q 0

sup
t < t0

E |A e
4(t)|=0.
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Proof. We show that {A e
i }, i=1, 2, 3, 4 are uniformly integrable. To

see this, we have the following estimates.

|A e
1(t)|=

o

2
|fŒ(t)OT e

t , DhP| [
o

2
||fŒ||. ||T0 ||. ||Dh||1

Thus A e
1 is uniformly integrable since it is uniformly bounded.

|A e
2(t)|=

1
a

|fŒ(t)OT e
t , V

e
t (V2

e
t (h))P|

[
C
a

||fŒ||. ||T0 ||. 5F
|x| < M

|V e
t |

2 dx+F
|x| < M

|N · V e
t |

2 dx6
1/2

×5F
|x| < M

|V2 e
t |

2 dx+F
|x| < M

|N · V2 e
t |

2 dx+F
|x| < M

|NN · V2 e
t |

2 dx6
1/2

.

Thus A e
2 is uniformly integrable in view of the uniform boundedness of the

4th moment of V e
t , V2 e

t , and their spatial derivatives due to Gaussianity and
the ultraviolet cutoff a1 > 0.

|A e
3(t)|=

1
a

|fœ(t)OT e
t , V

e
t (h)POT e

t , V2
e
t (h)P|

[
C
a

||fŒ||. ||T0 ||2
.
5F

|x| < M
|V e

t |
2 dx

+F
|x| < M

|N · V e
t |

2 dx+F
|x| < M

|V2 e
t |

2 dx+F
|x| < M

|N · V2 e
t |

2 dx6 .

Thus A e
3 is uniformly integrable for the similar reason that A e

2 is uniformly
integrable.

|A e
4 |=

oe

2a
|fœ(t)OT e

t , DhPOT e
t , V2

e
t (h)P− fŒ(t)OT e

t , DV2 e
t (h)P|

[
Coe

2a
5||fœ||. ||T0 ||2

.
5F

|x| < M
|V2 e

t |
2 dx+F

|x| < M
|N · V2 e

t |
2 dx6

1/2

+||fŒ||. ||T0 ||.

×5F
|x| < M

|V2 e
t |

2 dx+F
|x| < M

|NV2 e
t |

2 dx+F
|x| < M

|N2V2 e
t |

2 dx

+F
|x| < M

|N2N · V2 e
t |

2 dx6
1/26 . (38)
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Due to the fixed cutoff a1 > 0, the higher derivatives of V2 e
t do not cause any

difficulty and they all have uniformly bounded, say, the 4th moments.
Hence A e

4 is uniformly integrable. Clearly

lim
e Q 0

sup
t < t0

E |A e
4(t)|=0. L

3.2. Identification of the Limit

Once the tightness is established we can use another result in ref. 15
(Chapter 3, Theorem 2) to identify the limit. Let Ā be a diffusion or jump
diffusion operator such that there is a unique solution wt in the subspace of
D([0, t0); L.

w*(Rd)), -t0 < ., whose elements have the given initial data in
L.

w*(Rd) and that the solution satisfies the martingale property, i.e.,

f(wt) − F
t

0
Āf(ws) ds (39)

is a martingale. We shall show that for each f ¥ C3
c (R) there exists

f e ¥ D(A e) such that

sup
t < t0, e

E |f e(t) − f(OT e
t , hP)| < . (40)

lim
e Q 0

E |f e(t) − f(OT e
t , hP)|=0, -t < t0 (41)

sup
t < t0, e

E |A ef e(t) −Āf(OT e
t , hP)| < . (42)

lim
e Q 0

E |A ef e(t) −Āf(OT e
t , hP)|=0, -t < t0. (43)

Then the aforementioned theorem implies that any tight processes OT e
t , hP

converges in law to the unique process generated by Ā. As before we adopt
the notation f(t)=f(OT e

t , hP).
For this purpose, we introduce the next perturbations f e

2, f e
3. Let

A (1)
2 (f) — Oh, K (1)

f hP (44)

A (1)
3 (f) — Of, E[V e

t (V2
e
t (h))]P (45)
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where the positive-definite operator K(1)
f is defined in (21). It is easy to see

that

A (1)
2 (f)=E[Of, V e

t (h)POf, V2 e
t (h)P] (46)

A (1)
3 (f)=OBf, hP (47)

where the operator B=B1+B2 is given by (18) and (19).
Define

f e
2(t) —

1
a

fœ(t) F
.

t
E e

t [OT e
t , V

e
s(h)POT e

t , V2
e
s(h)P− A (1)

2 (T e
t )] ds

f e
3(t) —

1
a

fŒ(t) F
.

t
E e

t [OT e
t , V

e
s(V2

e
s(h))P− A (1)

3 (T e
t )] ds.

Let

G (2)
h1, h2

— C
i, j

“
2

“xi “yj
[h1(x) h2(y) C (2)

ij (x − y)]

Oh1, K (2)
f h2P — FF f(x) f(y) G (2)

h1, h2
(x, y) dx dy

where the covariance function C (2)(x − y) — E[V2 e
t (x) é V2 e

t (y)] has the
spectral density E(a+2b, k), and let

A (2)
2 (f) — Oh, K(2)

f hP

A (2)
3 (f) — Of, E[V2 e

t (V2
e
t (h))]P.

We then have

f e
2(t)=

e2

2a2 fœ(t)[OT e
t , V2

e
t (h)P2 − A (2)

2 (Te
t )] (48)

and similarly

f e
3(t)=

e2

2a2 fŒ(t)[OT e
t , V2

e
t (V2

e
t (h))P− A (2)

3 (T e
t )]. (49)

In view of the pre-factor e in (48) and (49) and the fact that all terms
involved are regular and uniformly bounded, we have
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Proposition 4.

lim
e Q 0

sup
t < t0

E |f e
2(t)|=0, lim

e Q 0
sup
t < t0

E |f e
3(t)|=0.

The proof of Proposition 4 is analogous to that of Proposition 2.
We have

A ef e
2(t)=

1
a

fœ(t)[OT e
t , V

e
t (h)POT e

t , V2
e
t (h)P− A (1)

2 (Te
t )]+Re

2(t)

A ef e
3(t)=

1
a

fŒ(t)[OT e
t , V

e
t (V2

e
t (h))P− A (1)

3 (Te
t )]+Re

3(t)

with

R e
2(t)=f'−(t) 5e2o

4a2 OT e
t , DhP−

e

2a2 OT e
t , V

e
t (h)P6 [OT e

t , V2
e
t (h)P2 − A (2)

2 (Te
t )]

+fœ(t)OT e
t , V2

e
t (h)P 5oe2

2a2 OT e
t , DV2 e

t (h)P−
e

a2 OT e
t , V

e
t (V2

e
t (h))P6

− fœ(t) 5oe2

4a2 OT e
t , DG (2)

h T e
tP−

e

a2 OT e
t , V

e
t (G (2)

h T e
t )P6 (50)

where in (50) G (2)
h denotes the operator

G (2)
h f — F G (2)

h, h(x, y) f(y) dy,

and similarly

R e
3(t)=fœ(t) 5oe2

4a2 OT e
t , DhP−

e

2a2 OT e
t , V

e
t (h)P6

× [OT e
t , V2

e
t (V2

e
t (h))P− A (2)

3 (Te
t )]

+fŒ(t) 5oe2

4a2 OT e
t , DV2 e

t (V2
e
t (h))P−

e

2a2 OT e
t , V

e
t (V2

e
t (V2

e
t (h)))P6

− fŒ(t) 5oe2

4a2 OT e
t , DE[V2 e

t (V2
e
t (h))]P

+
e

2a2 OT e
t , V

e
t (E[V2 e

t (V2
e
t (h))])P6 .
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Now all terms appearing in R e
2(t) and R e

3(t) are regular and uniformly
bounded, we easily have

Proposition 5.

lim
e Q 0

sup
t < t0

E |R e
2(t)|=0, lim

e Q 0
sup
t < t0

E |Re
3(t)|=0.

Set

R e(t)=Ae
4(t)+Re

2(t)+Re
3(t).

It follows from Propositions 3 and 5 that

lim
e Q 0

sup
t < t0

E |R e(t)|=0.

Recall that

M e
t (h)=f e(t) − F

t

0
A ef e(s) ds

=f(t) − f e
1(t)+fe

2(t)+fe
3(t) − F

t

0

o

2
fŒ(t)OT e

t , DhP ds

− F
t

0

1
a

[fœ(t)(OT e
s , hP) A (1)

2 (T e
s)+fŒ(t) A (1)

3 (T e
s)] ds − F

t

0
R e(s) ds

is a martingale. Now that (40)–(43) are satisfied we can identify the limiting
martingale to be

Mt(h)=f(t) − F
t

0

3fŒ(s) 5o0

2
OTs, DhP+

1
a

A (1)
3 (Ts)6+

1
a

fœ(s) A (1)
2 (Ts)4 ds.

(51)

Since OT e
t , hP is uniformly bounded

|OT e
t , hP| [ ||T0 ||. ||h||1

we have the convergence of the second moment

lim
e Q 0

E{OT e
t , hP2}=E{OTt, hP2}.
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Use f(r)=r and r2 in (51)

M (1)
t (h)=OTt, hP− F

t

0

5o0

2
OTs, DhP+

1
a

A (1)
3 (Ts)6 ds

is a martingale with the quadratic variation

[M(1)(h), M(1)(h)]t=
2
a

F
t

0
A (1)

2 (Ts) ds=
2
a

F
t

0
Oh, K(1)

Ts
hP ds.

Therefore,

M (1)
t ==2

a
F

t

0
`K (1)

Ts
dWs

where Ws is a cylindrical Wiener process (i.e., dWt(x) is a space-time white
noise field) and `K (1)

Ts
is the square-root of the positive-definite operator

given in (21). From (44) and (47) we see that the limiting process Tt is the
(assumed unique) distributional solution to the martingale problem (20) of
the Itô’s equation

dTt=1o0

2
D+

1
a
B2 Tt dt+`2a−1K(1)

Tt
dWt

=1o0

2
D+

1
a
B2 Tt dt+`2 a−1/2 NTt · dW(1)

t

where the operator B=B1+B2 is given by (18) and (19) and W (1)
t is the

Brownian vector field with the spatial covariance C (1)(x − y).

4. PROOF OF THEOREM 2

The argument is the same as before except with

V e
t (h) — V e

t · Nh

V2 e
t (h) — V2 e

t · Nh,

instead of (14) and (32), because of the incompressibility of the velocity
fields. Also, all the terms containing N · V e

t and N · V2 e
t vanish.
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The most severe term to occur in the argument for tightness (in the
expression for A e

4) is

oe

2a
|fŒ(t)OT e

t , DV2 e
t (h)P|

whose second moment can be bounded as

oe

2a
`E |fŒ(t)OT e

t , N2V2 e
t (h)P|2

[ C1
oe

2a
||fŒ||. ||T0 ||. 1F

|x| < M
E[|DV2 e

t |
2] dx2

1/2

[ C2oe ×˛a
a+2b − 3
1 , for a+2b < 3

`log(1/a1), for a+2b=3

1, for a+2b > 3.

(52)

Other possibly divergent terms occurring in identifying the limit can be
controlled similarly. For instance, the most severe term without the pre-
factor o occurs in R e

3(t) and can be bounded as

eE |OT e
t , V

e
t (V2

e
t (V2

e
t (h)))P|

[ e ||T0 ||. E1/2 |Ve
t (V2

e
t (V2

e
t (h)))|2

[ C1e ||T0 ||. 1F
|x| < M

E |V e
t |

2 dx2
1/2

×1F
|x| < M

E[|V2 e
t |

2] E[|N2V2 e
t |

2] dx+F
|x| < M

E[|NV2 e
t |

4] dx2
1/2

[ C2e 1F
|x| < M

E[|N2V2 e
t |

2] dx2
1/2

(53)

by the Gaussianity of the fields. The right side of (52) and (53) tends to
zero if either

a+2b > 3

or

a+2b=3, lim
e Q 0

e `log(1/a1)=0 (54)
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or

a+2b < 3, lim
e Q 0

ea
a+2b − 3
1 =0 (55)

is satisfied. The term involving eOT e
t , V

e
t (G(2)

h T e
t )P can be similarly esti-

mated.
The most severe term involving the pre-factor o occurs in R e

3 and can
be bounded as

oe2E |OT e
t , DV2 e

t (V2
e
t (h))P| [ Coe2 ||T0 ||. 1F

|x| < M
E[|N3V2 e

t |
2]2

1/2

’ ˛oe2, for a+2b > 4

oe2
`log(1/a1), for a+2b=4

oe2
a

a+2b − 4
1 , for a+2b < 4

(56)

the right side of which tends to zero if either

a+2b > 4

or

a+2b=4, lim
e Q 0

oe2
`log(1/a1)=0

or

3 < a+2b < 4, lim
e Q 0

oe2
a

a+2b − 4
1 =0 (57)

or

2 < a+2b < 3, lim
e Q 0

oe2
a

a+2b − 4
1 =lim

e Q 0
ea

a+2b − 3
1 =0.

Note that for a+2b [ 2 the condition (54) or (55) implies that

lim
e Q 0

e2
a

a+2b − 4
1 =0.

Finally we note that in the limit (e, a1 Q 0) the limiting martingale is,
instead of (51),

Mt(h)=f(t) − F
t

0

3fŒ(s) 5o0

2
OTs, DhP+

1
a

Ā (1)
3 (Ts)6+

1
a

fœ(s)Ā (1)
2 (Ts)4 ds

(58)
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where

Ā (1)
2 = lim

a1 Q 0
A (1)

2 , Ā (1)
3 = lim

a1 Q 0
A (1)

3

and the limiting process Tt is the (assumed unique) distributional solution
to the martingale problem associated with the SDE

dTt=1o0

2
D+

1
a
Ba 2 Tt dt+`2 a−1/2 NTt · dWa (1)

t

=
o0

2
DTt dt+`2 a−1/2 NTt p dWa (1)

t

where Wa (1)
t is the Brownian vector field with the spatial covariance

Ca (1)(x − y) given in (24) and the operator Ba is given in (25).
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